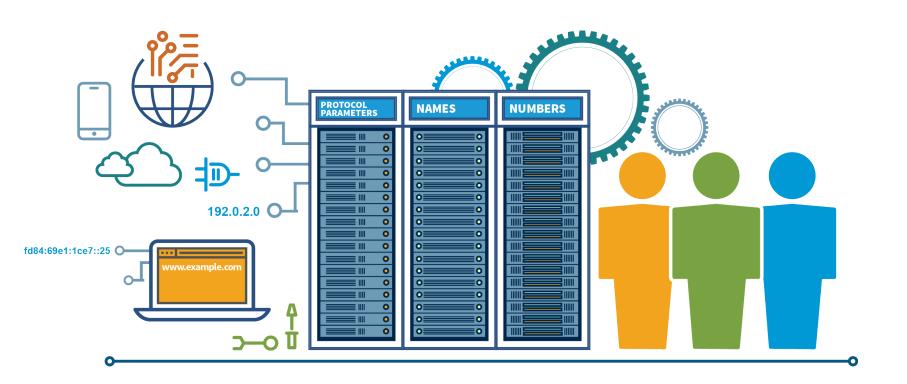
Identifier Technology Health Indicators (ITHI)

Stakeholder Engagement & Operations Manager, Africa


UbuntuNet Connect 2018

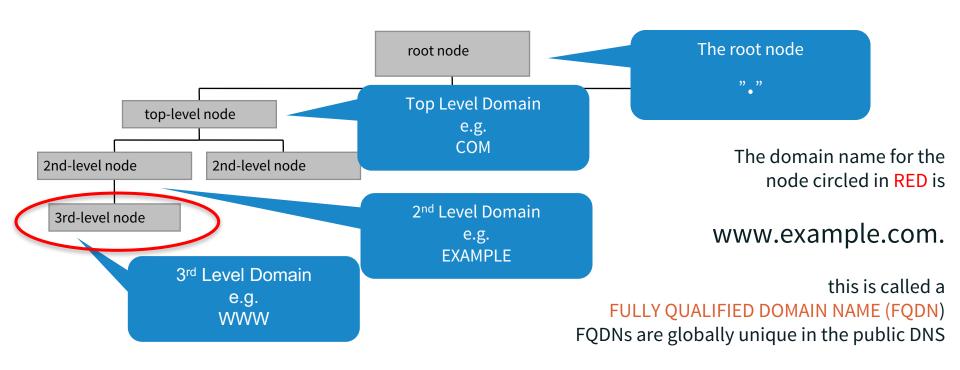
19-20, November 2018; Zanzibar, Tanzania

ICANN

Coordinating with our partners, we help make the Internet work.

What Are Internet Identifiers?

The Internet is a mesh of networks whose operators agree to communicate using predefined protocols ("TCP/IP")


Networks use identifiers to name or number individual computers (hosts) so that these can communicate

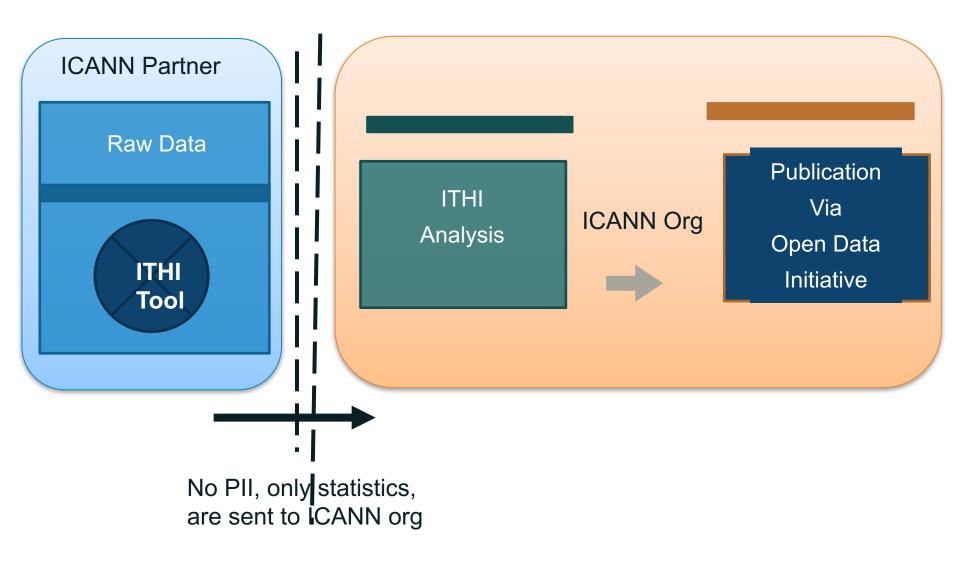
- Medium Access Component (MAC) addresses identify the Internet's doors or PO box numbers
- -IP addresses identify the Internet's streets house numbers
- Autonomous System Numbers identify the Internet's neighborhoods
- Domain Names identify Internet hosts and services using a famliar language rather than IP addresses

Definitions: Labels and Domain Names

Each node in the DNS name space has a label
The domain name of a node is the list of the labels on the path from the node to the root of the DNS

Operational elements of the DNS

- Authoritative Name Servers host zone data
 - The set of "DNS data" that the registrant publishes
- Recursive Name Resolvers ("resolvers")
 - Systems that find answers to queries for DNS data
 - Caching resolvers find and store answers locally for "TTL" period of time
- Client or "stub" resolvers
 - Software in applications, mobile apps or operating systems that query the DNS and process responses



ITHI Principles of Operation

- Technical focus
- Problem areas → Metrics → Measurement
- Current value and trend over time
 - Automated process to collect & analyse data
- Measurement, not interpretation
- Extraction of statistics to avoid data privacy issues
- Open source tools & results

ITHI: Process

8 Metrics and Data Sources

Metric	Name	Data Source
M1:	Inaccuracy of Whois Data	ICANN compliance dept.
M2:	Domain Name Abuse	ICANN's DAAR Project https://www.icann.org/octo-ssr/daar
M3:	DNS Root Traffic Analysis	Samples of DNS root traffic
M4:	DNS Recursive Server Analysis	Summaries of recursive resolvers traffic
M5:	DNS Resolver Behavior	APNIC
M6:	IANA registries for DNS parameters	Scan of recursive resolvers traffic
M7:	DNSSEC Deployment	Snapshots of DNS root zone
M8:	DNS TLD Traffic Analysis	Summaries of TLD traffic

Partners for measuring the DNS

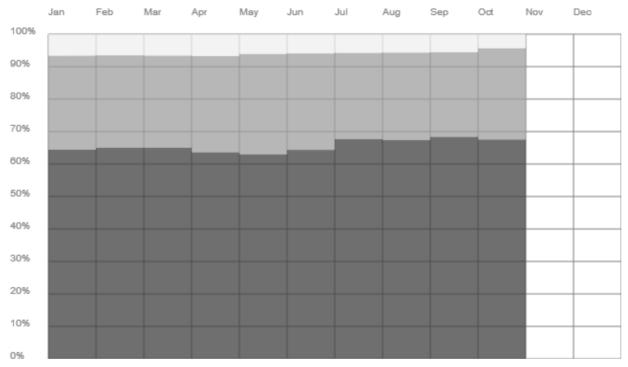
- Existing Partners:
 - National University of La Plata (UNLP),
 Argentina,
 - University of Cape Coast, Ghana,
 - DNS Nawala, Indonesia, and
 - Kaznic, Kazakhstan (.KZ)
- Recruiting more partners:
 - Recursive resolvers
 - Authoritative servers

New: Software updates

- Open Source Software
 - Windows, Linux, Free BSD
- Packages available for Centos, Ubuntu
- Audit by NLLabs

Identifier Health Dashboard

- Next slides show the proposed Health Dashboard
- Select specific data from rich metrics
- Detailed results available at https://ithi.research.icann.org/


Identifier Dashboard: Four Specific Health Indicators

After 9 month of data collection, we can propose four key indicators:

- 1) Root Traffic Characterization
- 2) Resolver Concentration
- 3) DNS SEC deployment
- 4) Name Leakage

1) Root Traffic Characterization

Metric	Current Value	Average Value
M3.1 (% No Such Domain queries)	<mark>68%</mark>	<mark>65%</mark>
M3.2 (% cacheable queries)	28%	28%
Core (100% - M3.1 - M3.2)	4%	6%

2) Resolver Concentration (proposal)

- Motivated by concerns of current and potential future concentration of the DNS Resolver market
- One data-point: July 2018
 - Resolvers aggregated by AS number
 - Top resolver market share was 13%
 - 25 resolvers account for 50% of eyeballs
 - 460 resolvers to account for 90% of eyeballs
 - 28,000 resolvers seen in the eyeball study
- Three Data sources to be combined:
 - Root (M3), TLDs (M8), APNIC (M5)
 - Will require some development

3) DNSSEC Deployment (Jul 2018)

Origin	Metric definition	Value
M7.1	%TLD signed	91%
M7.2	%CCTLD signed	51%
M3.5	% of resolvers that set DO bit in queries to the root	82%
M5.3.2	% of resolvers that set the DO bit in queries to APNIC test	84%
M5.3.1	% of users using resolvers that set the DO bit in queries	92%
M4.5	% of stub clients setting the DO bit in queries to recursive	<mark>1%</mark>
M5.4.1	% of users using resolvers that perform DNSSEC validation	51%
M5.4.2	% of resolvers that perform DNSSEC validation	<mark>25%</mark>

- Recursive resolvers appear ready (DO bit)
 - But this may be due to software default setup
 - Only 25% actually perform DNSSEC validation
- Stub resolvers (clients) rely on recursive resolvers for validation

4) Name Leakage: Root and Recursives

		%
Origin	Value	Leaks
M3.3.1	LOCAL	6.0%
M3.3.2	HOME	4.8%
M3.3.2	IP	1.1%
M3.3.2	INTERNAL	1.1%
M3.3.2	<mark>LAN</mark>	0.8%
M3.3.2	LOCALDOMAIN	0.6%
M3.3.2	DHCP HOST	0.5%
M3.3.1	INVALID	0.5%
M3.3.2	DHCP	0.5%
M3.3.1	LOCALHOST	0.5%
M3.3.2	CORP	0.3%
M3.3.2	DLINK	0.3%
M3.3.2	GATEWAY	0.3%
M3.3.2	DLINKROUTER	0.3%
M3.3.2	BELKIN	0.2%
M3.3.2	HOMESTATION	0.2%
M3.3.2	OPENSTACKLOCAL	0.2%
	Other names	81.8%

Origin	Value	% Leaks
M4.2	LOCAL	1.5 %
M4.3	UNIFI	1.5 %
M4.3	HOME	1.4 %
M4.3	TOTOLINK	0.7 %
M4.2	LOCALHOST	0.5 %
M4.3	LAN	0.4 %
M4.3	LOCALDOMAIN	0.3 %
M4.2	INVALID	0.01%
	Other names	94 %

In theory, root and recursive should be similar. In practice, they are not:

- Local effects dominate recursive traffic
- Small number of recursive resolvers in study
- No corporate resolvers in study

Large fraction of leaks is not explained by "frequent names":

- Host names of local machines (recursive),
- Wi-Fi routers (recursive, root),
- Made up names (root traffic).

.MAIL is found, but way down the list

Contact us!

- Alain Durand <alain.durand@icann.org>
- Christian Huitema
 <huitema@huitema.net>

https://ithi.research.icann.org

One World, One Internet

Visit us at icann.org

@icann

linkedin/company/icann

facebook.com/icannorg

slideshare/icannpresentations

youtube.com/icannnews

soundcloud/icann

flickr.com/icann

instagram.com/icannorg